Reconstruction of Simulated Magnetic Resonance Fingerprinting Using Accelerated Distance Metric Learning
نویسندگان
چکیده
منابع مشابه
Multicompartment Magnetic Resonance Fingerprinting
Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spinrelaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects the tissue’s microstructure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartm...
متن کاملMagnetic resonance fingerprinting (MRF)
Understanding the need Quantitative vs Qualitative MRI data: The vast majority of common clinical MRI protocols rely on qualitative images reflecting the weighted effect of different tissue parameters. These contrast parameters include relaxation times, principally T1, T2 and T2*, as well as structural or functional quantities such as diffusion and blood flow. The absolute level of the signal v...
متن کاملGPU-Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging
The main tissue parameters targeted by MR tomography include, among others, relaxation times T1 and T2. This paper focuses on the computation of the relaxation time T2 measured with the Spin Echo method, where the sensing coil of the tomograph provides a multi-echo signal. The maxima of these echoes must be interleaved with an exponential function, and the T2 relaxation can be determined direct...
متن کاملUnsupervised distance metric learning using predictability
Distance-based learning methods, like clustering and SVMs, are dependent on good distance metrics. This paper does unsupervised metric learning in the context of clustering. We seek transformations of data which give clean and well separated clusters where clean clusters are those for which membership can be accurately predicted. The transformation (hence distance metric) is obtained by minimiz...
متن کاملAnalysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Biomedical Technologies
سال: 2020
ISSN: 2345-5837
DOI: 10.18502/fbt.v7i1.2720